The Formation and Evolution of Clusters of Galaxies in Different Cosmogonies
نویسندگان
چکیده
The formation of galaxy clusters in hierarchically clustering universes is investigated by means of high resolution N-body simulations. The simulations are performed using a newly developed multi-mass scheme which combines a PM code with a high resolution N-body code. Numerical effects due to time stepping and gravitational softening are investigated as well as the influence of the simulation box size and of the assumed boundary conditions. Special emphasis is laid on the formation process and the influence of various cosmological parameters. Cosmogonies with massive neutrinos are also considered. Differences between clusters in the same cosmological model seem to dominate over differences due differing background cosmogony. The cosmological model can alter the time evolution of cluster collapse, but the merging pattern remains fairly similar, e.g. number of mergers and mass ratio of mergers. The gross properties of a halo, such as its size and total angular momentum, also evolve in a similar manner for all cosmogonies and can be described using analytical models. It is shown that the density distribution of a halo shows a characteristic radial dependence which follows a power law with a slope of α = −1 at small and α = −3 at large radii, independent of the background cosmogony or the considered redshift. The shape of the density profiles follows the generic form proposed by Navarro et al. (1996) for all hierarchically clustering scenarios and retains very little information about the formation process or the cosmological model. Only the central matter concentration of a halo is correlated to the formation time and therefore to the corresponding cosmogony. We emphasise the role of non-radial motions of the halo particles in the evolution of the density profile.
منابع مشابه
Scaling relations in dynamical evolution of star clusters
We have carried out a series of small scale collisional N-body calculations of single-mass star clusters to investigate the dependence of the lifetime of star clusters on their initial parameters. Our models move through an external galaxy potential with a logarithmic density profile and they are limited by a cut-off radius. In order to find scaling relations between the lifetime of star cluste...
متن کاملStellar Populations in the Central Galaxies of Fossil Groups
It is inferred from the symmetrical and luminous X-ray emission of fossil groups that they are mature, relaxed galaxy systems. Cosmological simulations and observations focusing on their dark halo and inter-galactic medium properties confirm their early formation. Recent photometric observations suggest that, unlike the majority of non-fossil brightest group galaxies (BGGs), the central early-t...
متن کاملThe Fate of the First Galaxies. I. Self-consistent Cosmological Simulations with Radiative Transfer
In cold dark matter (CDM) cosmogonies, low-mass objects play an important role in the evolution of the universe. Not only are they the first luminous objects to shed light in a previously dark universe, but, if their formation is not inhibited by their own feedback, they dominate the galaxy mass function until redshift z ∼ 5. In this paper we present and discuss the implementation of a 3D cosmo...
متن کاملماده تاریک یا دینامیک دیگر؟
Allowing the energy of a gravitational field to serve partially as its own source allows gravitating bodies to exhibit stronger fields, as if they were more massive. Depending on degree of compaction of the body, the field could be one to five times larger than the Newtonian field. This is a comfortable range of increase in field strength and may prove to be of convenience in the study of vel...
متن کاملPulsating red giant and supergiant stars in the Local Group dwarf galaxy Andromeda I
We have conducted an optical long-term monitoring survey of the majority of dwarf galaxies in the Local Group, with the Isaac Newton Telescope (INT), to identify the long period variable (LPV) stars. LPV stars vary on timescales of months to years, and reach the largest amplitudes of their brightness variations at optical wavelengths, due to the changing temperature. They trace stellar populati...
متن کامل